hot and bothered

Image Source.

When an extrasolar planet transits its parent star, we get the opportunity to learn the physical size of the planet by measuring how much of the star’s light is blocked during the occultation. To date, fourteen extrasolar planets have been observed in transit, and the big surprise is that they have a much wider range of sizes than astronomers had predicted.

Five for the show

HD 149026 b, for example, is more than 30% smaller in size than one would expect. Its dense, dimunitive stature is thought to stem from a ~70 Earth-mass core of elements that are heavier than the hydrogen and helium that dominate the composition of most of the known extrasolar planets. HD 209458 b, on the other hand, is roughly 30% larger than predicted. The reason for its bloated condition isn’t fully clear, but it’s believed that the planets with larger-than-expected radii are tapping an extra source of internal heat that keeps them eternally buff.

A lot of astronomers are currently interested in the size question for the extrasolar planets, and we’ve written a number of oklo.org posts that cover the subject. [See 1. here, 2. here, 3. here, 4. here, 5. here, 6. here, 7. here, 8. here, and 9. here.]

Josh Winn (MIT) and Matthew Holman (Harvard-Smithsonian CfA) have written a paper that presents an interesting hypothesis for resolving the HD 209458 b radius dilemma. Winn and Holman propose that the planet is caught in a so-called Cassini state, which is a resonance between spin precession and orbital precession. In short, if HD 209458 b is trapped in the “Cassini state 2”, then its spin axis will lie almost in the orbital plane. Like all short-period planets, the planet will spin once per orbit, but it will literally be lying on its side as it circles the parent star. A hot Jupiter in Cassini state 2 will easily experience enough tidal heating to maintain a 30-percent pump.

If a planet is in Cassini state 2, then the pattern of illumination on the surface is rather bizarre. At the north and south poles, the parent star rises and sets once per orbital period, and at mid-day passes directly overhead in the sky. This contrasts with the two locations on the equator from which the parent star never rises above the horizon, and the two other spots from which the star never quite sets. Here are two short .avi format animations that help to illustrate the situation. In the first animation, we hover above the point on the equator that receives maximum illumination. In the second animation, we hover above the point on the equator that receives the least illumination.

I’ve been working with UCSC physics graduate student Jonathan Langton to model the surface flows on extrasolar giant planets. As a first research problem, we made simulations of what the surface flows might look like on a planet in Cassini state 2, and compared them with the flows on a planet in Cassini state 1. Jonathan has just had his paper accepted by ApJ Letters. It should show up on astro-ph very shortly, but in the meantime, here’s a link to the .pdf file for the accepted version.

The results of Langton’s simulations are interesting. If the planet is in the standard-issue Cassini state 1, then a steady-state flow-pattern emerges on the planet, with the hottest temperatures occuring eastward of the substellar point, and the coldest region lying near the dawn terminator of the night-side:

If the planet is in Cassini state 2, then Langton’s model shows that a periodic flow pattern emerges which repeats every orbital period. In the figure below, each successive frame is advanced by 1/4th of an orbital period. The top row of images corresponds to an equator-on view, and the bottom row of images corresponds to a pole-on view:

It’s interesting to watch the animations of the temperature flows. Here’s a link to the equatorial view (5.7 MB, .avi format).

Event though the surface flow patterns are quite different in Cassini State 1 and Cassini state 2, the overall light curves as viewed from Earth don’t show much diffence. The figure below shows infrared emissions from the planet over one full rotation period. The blue line shows the Cassini state 1 light curve, the red line shows the Cassini state 2 light curve. These two curves are more similar to eachother than they are to the Cassini state 1 light-curve predicted by Cooper and Showman (2005), who used a different simulation method and a different set of assumptions, and got a larger overall variation in the predicted infrared emission from the planet during the course of an orbit:

It will be tough to use the Spitzer telescope to reliably distinguish which Cassini State the planet is in.

stability

Image Source.

If you’re a new visitor to the site, welcome aboard! Yesterday’s post talks about the systemic collaboration, and gives an overview of how you can participate.

The interpretation of radial velocity data sets is confounded by the existence of many different model planetary systems that all do a good job of fitting the data from a given star. If you really want to know whether a particular fit is the correct interpretation of the system, then you need to wait for (or make) more observations to see if your fit’s predicted radial velocity curve is confirmed.

For a real planetary system orbiting a real star, it can take years for enough confirming observations to be made, and so it’s useful to have as many criteria as possible for evaluating whether a particular fit is a contender. Orbital stability provides one such criterion.

On the backend, there are many orbital models that have been submitted that give excellent fits to the given data sets. For example, the four configurations shown in the picture just below are all acceptable models for the 14 Her system.

One immediately notices that these orbital configurations look “crowded”. The orbits make close approaches and sometimes even cross. If we let these model systems run forward in time, then we find that the mutual gravitational pulls between the planets lead to catastrophe within a few decades or less. Instead of behaving in an orderly fashion, the orbits execute motions like this:

which lead inevitably to collisions and ejections. While it’s theoretically possible that we happen to be observing a particular system just before it experiences disaster, Occams razor strongly suggests that wildly unstable fits are likely spurious. We can safely exclude any configuration that lasts for only a tiny fraction of the stellar ages (which are generally in the 2-10 billion year range).

Participants in the systemic collaboration can evaluate the stability of their models by using the “check long-term stability” function on the console. Stefano has also recently implemented a robot that crawls through the systems residing in the backend database and integrates all of the submitted fits. So far, it has sorted out which systems are unstable on timescales of less than a century, and as time goes on, it’s pushing the integration times to longer horizons. It turns out that a 100-year integration can catch a majority of the systems that eventually go unstable. After that, we expect roughly equal numbers of systems to be lost in each factor-of-ten increase of integration time.

Although we don’t expect to see orbital instabilities play out on our watch, it’s nevertheless likely that planet-planet interactions and their associated instabilities have played an important past role in sculpting the systems that we now observe. For example, Eric Ford and his collaborators have published a highly plausible theory for the formation of the Upsilon Andromedae planetary system that involves a dramatic instability. In their scenario, the system starts out with four planets, and eventually ejects one of them. The outer two survivors are left stunned and reeling, and the dynamical imprint of the disaster survives to the present day. They’ve made an engaging animation (available here) that shows the action blow-by-blow.

This brings up a relevant question. If orbital instability exists among the extrasolar planets, might our own solar system eventually go unstable? Is it possible that Earth will find itself getting dramatically tossed around the solar system in the manner that was experienced by the unfortunate Upsilon Andromedae E?

The question isn’t new, and the stability of the solar system has been at the forefront of interest for the last 350 years. It was first tackled by Newton, who wanted to understand how the orbits of the Jupiter and Saturn would behave over long periods if their mutual interactions were taken into account. Newton put a lot of effort into the problem, and eventually decided that:

To consider simultaneously all these causes of motion, and to define these motions by exact laws admitting of easy calculation exceeds, if I am not mistaken, the force of any human mind.

Newton’s fame, and the fact that he’d written off the problem as too difficult, was a big motivation for succeeding generations of mathematicians. Pierre Simon de Laplace eventually solved the problem of the motions of Jupiter and Saturn, and fully explained their orbits to the accuracy that could be observed in the late 1700s. In Laplace’s model, the solar system is completely stable, and the inherent predictability of his planetary motions contributed to the concept of a rational determinism, and the idea of a clockwork universe.

During its first three hundred years, the problem of the stability of the solar system was attacked using pen and paper. In the past few decades, however, the advent of computers has provided a powerful new tool. We can now make accurate simulations of the trajectories of the planets through space, and look in detail at the solar system’s possible futures. By the 1980s, when hardware and algorithms had progressed to the point were it was possible to integrate the planets millions of years forward into the future, it was found that the solar system is chaotic in a sense originally envisioned by Poincaré. If the position of a planet, the Earth say, is given a tiny change in the computer, then as millions of years elapse, this slight perturbation grows erratically larger. If Earth is displaced in its orbit by a centimeter, then, after several million years, Earth will likely be located somewhere within 2 centimeters of where it would have been had it been given no push at all. After several million years, the degree of uncertainty doubles again, this time to 4 centimeters.

Worrying about such tiny buildups of uncertainty in the position of Earth on its orbit sounds utterly absurd. Nevertheless, like interest compounding in a forgotten account, the accumulation of uncertainty is guaranteed to eventually become significant. After a hundred million years, which is much less than the 4.5 billion year age of the solar system, the position of Earth in its orbit becomes completely impossible to predict. For times 100 million years in the future, we have no firm knowledge of Earth’s trajectory. We have no idea whether January 1, 100,000,000 AD will occur in the winter or in the summer, or even whether Earth will be orbiting the Sun at all.

Poincaré’s great insight was that the realistic physical description of non-trivial systems can involve what we now call chaotic behavior. The weather is an excellent example. Overnight weather forecasts are generally quite accurate. Three-day forecasts are certainly of some utility. Two-week forecasts, on the other hand, are essentially worthless. Although we have a very clear understanding of the laws of physics that govern the behavior of Earth’s atmosphere, we can’t sample global weather conditions with enough precision to make forecasts accurate beyond a few days. If you let out a deep sigh at the complexity of it all, then the air current that you exhale will spur subtle deviations in the flow of air and moisture of the Earth’s surface that become increasingly magnified over time. The aggravated swirl of air from a slap at a mosquito can career into divergences that visit a hurricane on Miami rather than spinning it out into oblivion over the North Atlantic. Although we can’t accurately predict how the pattern of weather fronts and daily high temperatures will look on the 10:00 p.m. News two weeks from today, we do have some idea of what the weather will be. If it is in the middle of the summer, Texas will be hot. Duluth, in January, will be cold. The pattern of erratic day-to-day weather is superimposed over solidly predictable seasonal and regional climates.

We can thus ask the question: Are the movements of the planets predictably chaotic in the same sense as the weather? That is, over billions of years, will the planets wander only within circumscribed bounds, or is a more wild chaos, with orbit crossing, ejections, collisions and the like – a real possibility?

The answer will be a statistical statement. To high probability, the planets will remain more or less on their present courses until the Sun becomes a red giant. Exactly how high a probability is not fully clear. Stay tuned…

Roll ’em out…

Image Source.

The discovery of new planets is rarely clear cut. No sooner does a new world (Vesta, Neptune, Pluto) emerge, than the wrangling for the credit or the naming rights starts. And it’s usually possible to find a reason why the prediction (or even the planet itself) wasn’t really valid in the first place.

The trans-Uranian planet predicted by Urbain J. J. Le Verrier and John Couch Adams happened to coincide quite closely with Neptune’s actual sky position in September 1846, but the orbital periods of their models were too long by more than 50 years. Le Verrier’s predicted planetary mass, furthermore, was too large by nearly a factor of three, and Adams’ mass prediction was off by close to a factor of two.

In England, following the announcement of Neptune’s discovery, and with the glory flowing to Le Verrier in particular and France in general, the Rev. James Challis and the Astronomer Royal George Airy were denounced for not doing enough to follow up Adams’ predictions, “Oh! curse their narcotic Souls!” wrote Adam Sedgwick, professor of geology at Trinity College.

Nowadays, with the planet count up over 200, the prediction and discovery of a new world doesn’t quite carry the same freight as it did in 1846. No editorial cartoons, no Orders of Empire, and no extravagant public praise to the discoverer, such as that heaped by Camille Flammarion on Le Verrrier, who wrote, “This scientist, this genius, has discovered a star with the tip of his pen, without other instrument than the strength of his calculations alone!”

Nevertheless, I don’t want to be shoehorned into the ranks of the “narcotic souls” as a result of not properly encouraging the bringing to light of any potential planetary discoveries in the systemic catalog of real stellar radial velocity data sets. As of Dec. 30th, 2006, over 3,680 orbital fits have been uploaded to the systemic backend. It’s definitely time to start sifting carefully through the results that the 518 registered systemic users have produced. Over the next few weeks we’ll be introducing a variety of analysis and cataloging tools that will make this job easier, but there are some interesting questions that can be answered right away. Foremost among these is: what are the most credible (previously unannounced) planets in the database?

The backend uses the so-called reduced chi-square statistic as a convenient metric for rank-ordering fits:

In the above expression, N is the number of radial velocity data points, and M is the number of activated fitting parameters. As a rule of thumb, a reduced chi-square value near unity is indicative of a “good” fit to the data, but this rule is not exact, and should hence be applied with caution. The observational errors likely depart from a normal distribution, and more importantly, the tabulated errors don’t incorporate the astrophysical radial velocity noise produced by activity on the parent star. Furthermore, it’s almost always possible to lower the reduced chi-square statistic by introducing an extra low-mass planet.

Eugenio recently implemented the downloadable console‘s F-test, which can provide help in evaluating whether an additional planet is warranted. The F-test is applied to two saved fits and returns a probability that the two fits are statistically identical. As an example, pull up the HD 69830 data set and obtain the best two planet fit that includes the 8.666-planets and 31-day planets. Save this fit to disk. Next, add the 200-day outer planet and save the resulting 3-planet fit to disk (using a separate name). Clicking on the console’s F-test button allows the F-test to be computed using the two saved fits:

In the case of HD 69830, there’s a 1.7% probability that the 2-planet fit and the 3-planet fit are statistically identical. This low probability indicates that the third planet is providing a significant improvement to the characterization of the data. It’s likely really out there orbiting the star.

So here’s the plan: Let’s comb through the systemic “Real Star” catalog, and find the systems that (1) contain an unannounced planet(s) in addition to the previously announced members of the system (see the exoplanet.eu catalog for the up-to-date list). (2) have a F-test probability of less than 2% of being statistically identical, and (3) are dynamically stable for at least 10,000 years. If you find a system that meets these requirements, post your findings to the comments section of this post.

Disclaimer: this exercise is for the satisfaction of obtaining a better understanding of the planetary census, and also for fun. When the planets do turn up, I’m going to sit back with a bottle full of bub and enjoy any scrambles for priority from a safe distance.

Happy New Year, y’all!

The Mass-Period Diagram

radio -- live transmission

Image Source.

When J. Edgar Hoover was getting on in years, his aides would often tell scheduled visitors to his office that he was unable to meet with them because he was “in conference”. In reality, this meant that Hoover was napping at his desk.

It might seem that the refrain of, “we’re busy working on the systemic back-end” is an equally convenient euphemism for long lapses between posts on the front end. Nevertheless, we have been busy getting the new oklo xserve quad xeon up and running. The whole site has now been replicated and tested, the server is live and on air, and very shortly, we’ll be flipping the switch. Can’t wait, man!

With the vast increase in processing power afforded by the xserve, we’ll be able to provide a much more extensive suite of research tools to oklo visitors. In particular, it’ll be possible to dynamically generate the kinds of correlation diagrams that are currently only available from our estimable continental competition: exoplanet.eu.

It’s always interesting to look through the latest versions of the correlation diagrams to see whether the various trends and hints of trends are holding up. The a-e plot is worth examining, as is the plot that charts the number of planetary discoveries per year over the past decade. As of today, exoplanet.eu lists 192 planets that have been detected with the radial velocity method. Plotting the masses of these planets against their periods on a log-log plot (and running the resulting screenshot through Illustrator) yields the following:

latest mass-period diagram

For Keplerian orbits, the relationship between the radial velocity half-amplitude of the parent star and the orbital period of the planet is given by:

equation for radial velocity half-amplitude

If we assume that the mass of the planet is negligible in comparison to the mass of the star and if we further assume edge-on, circular orbits around solar mass stars, then we get the dashed lines in the figure that show detection thresholds for K=3 m/s and K=1 m/s. The three planets orbiting HD 69830 stand out in this diagram as the most striking discoveries of 2006.

To the eye, there are two curious clusters of planets in the diagram. At short periods (P~3d) we have the hot Jupiters. Most of these have masses (times the sine of the unknown inclination) somewhat less than Jupiter. At longer periods (P>100d) we have a second prominent clump of planets. These are the Eccentric Giants, and their masses average out at a significantly higher value (between 2 and 3 times the mass of Jupiter). Part of the difference in mass is due to selection bias, but nevertheless there is a real effect. Like the planet-metallicity connection, this effect is telling us something about either planet formation or planet migration (probably the latter).

Anyone got an idea regarding what’s going on? Let’s get a discussion going in the comment section. Over the past week, I’ve been flooded by depressingly clumsy attempts at comment spam from single-minded robots with mechanical enthusiasms for satellite TV service and online poker, e.g. “Great blog, keep it comming.” It’d be nice to see some signal in the noise…

New worlds to conquer

Image Source.

The California Carnegie planet search team posted a data-rich paper on astro-ph this week. The new article is scheduled to appear in the February 2007 issue of the Astrophysical Journal. Eugenio, exercising his usual diligence, has added the new velocity tables to both the downloadable systemic console and the systemic back-end stellar catalog.

The highlight of the paper is a new two-planet system orbiting HIP 14810, a metal-rich solar-mass star lying 53 parsecs away. The inner planet in the system has a period of 6.66 days, and tips the scales with least 3.84 Jupiter Masses. The outer planet is less massive (Msin(i)=0.76 Mjup), and goes around the star every 95.3 days.

The secular interaction between the two planets compels them to trade angular momentum back and forth. As a result, the inner planet cycles between an eccentricity of 0.02 and 0.15 on a relatively short 5000-year timescale. It’s currently in the high-eccentricity phase of its orbit. The large radial velocity signal-to-noise for the planet means that its eccentricity can be measured quite precisely (have a look at it with the console). The fact that the orbit is clearly non-circular would be strong evidence for the presence of planet c, even if there weren’t enough data to detect c directly. If planet b was the only significant planet in the system, its orbit would have circularized via tidal dissipation on a timescale that is less than the age of the star.

Short-period planets with masses greater than three Jupiter masses are intrinsically rare. Tau Boo b (with a mass of at least 3.9 Jupiter masses and an orbital period of 3.3 days) is the only other object with roughly similar properties. By contrast, 32 planets with periods of less than a week and minimum masses less than Jupiter’s mass are currently known.

In my opinion, the two most robust statistical correlations that have emerged from the first decade of extrasolar planet detection are (1) the planet-metallicity connection and the (2) dearth of high-mass short-period planets. The planet-metallicity correlation makes perfect sense. It’s the natural, expected outcome of the core-accretion process and the fact that Jovian-mass (as opposed to Neptunian-mass) planet formation is a threshold phenomenon. The paucity of high-mass short-period planets, on the other hand, is both weird and completely unexplained. It’s telling us something about the process of planetary formation and migration. We just don’t know what it is.

Noise Floor

concrete sky

Image Source.

Giant planets are interesting. Terrestrial planets are more interesting. Habitable terrestrial planets are the most interesting of all, and it’s nearly guaranteed that we’re living in the age when the first genuinely Earthlike worlds beyond our solar system will be discovered. The only question is which technique will wind up doing it. The big money is on space-based transit photometry, but I think that ground-based RV might take the prize.

The Systemic Challenge 004 system was designed to be a futuristic idealization of what the Sun’s reflex velocity would like if it were observed with high precision from a neighboring star for more than two decades.

The individual radial velocity uncertainties for the 1172 velocities the Challenge 004 datset are each of order 10 centimeters per second. Errors this small are still safely smaller than the sub-meter per second precision that is currently being obtained by the Swiss team (with HARPS) and the California Carnegie team (at Keck). Given the rapid improvement in the radial velocity technique over the past decade, however, it’s not at all unreasonable to expect instrumental precisions of 10 cm/s fairly soon. Many console users were able to extract the four largest-amplitude solar-system planets — Jupiter, Saturn, Earth, and Venus — out of the challenge004 dataset, suggesting that it’s only a matter of time before instrumental precisions and observational baselines arrive at the threshold where truly habitable, Earth-mass planets can be detected from the ground using the radial velocity technique.

A potential show-stopper for this rosy predictive picture is the astrophysical radial velocity noise produced by the stars themselves. If you want to detect a planet with the mass and period of Earth (which induces a radial velocity half-amplitude of only 9 cm/sec) then you need to be assured that the star is quiet enough for the low-amplitude terrestrial planet signal to be detectable. It’s therefore natural to ask the question: what does the Sun’s reflex velocity look like?

The GOLF experiment on the SOHO satellite provides one set of measurements. A massive time-series of radial velocity observations (from 1996 through 2004) has been published, and is now publicly available. The data set contains over seven million radial velocities taken at a 20-second cadence. The main goal in obtaining this data was to study the Sun’s spectrum of p and g-type modes, which show strongest oscillations at periods of a few minutes.

Three alternate calibrations of the GOLF dataset are posted on the project website. Two of these have clearly been processed to filter out low-frequency, long-period radial velocity variations. It’s interesting, however, to look at what the one unfiltered dataset suggests is happening over timescales of a year or more. I sampled the unfiltered data at a cadence of one velocity measurement per several days, and then loaded the resulting time-series into freshly downloaded version of the systemic console:

radial velocities from the GOLF experiment

According to the above time series, the Sun is a pretty noisy star. I scoured the papers on the GOLF site, and could not find any discussion regarding how much of the variation shown above is believed to come from instrumental effects and how much is belieived to be actually intrinsic to the Sun. The fact that both the scatter and the amplitude of the variations seem to be increasing during the run of the data tend to indicate that intrumental effects relating to the aging of the detector play an important role. If anyone has more specific information on this issue (or if anyone is aware of a preferred calibration) please post to the comments section of the post.

What happens to the detectability of planets that are placed in the GOLF time series? To date, the most precise RV detection of an extrasolar planetary system is the Swiss Team’s discovery of the three Neptune-mass planets orbiting HD 69830. As a control experiment, we relabeled the published HD 69830 dataset at systemic003, and placed it on the backend for Systemic users to evaluate. As expected, nearly all of the twelve submitted fits recovered the published configuration, with chi-square reaching down to about 1.20.

For the systemic004 system, we took the published HD 69830 3-planet orbital model and integrated it forward in time to make a synthetic radial velocity curve. We then perturbed this curve with noise values drawn from the unfiltered GOLF dataset (We averaged the velocities into 15-minute blocks to simulate rapid-fire multiple observations that average over high-frequency p-modes). As of Sunday night, there have been 21 fits uploaded for systemic004 [thanks, y’all, -ed.]. None of them manage a chi-square below 2.5, and aside from the innermost planet, none of them make a convincing case for the presence of the planets that were placed in the dataset. Log in to the backend, call up systemic004 from the “real stars” catalog, and you’ll see what I mean.

The conclusion, then, is that if the GOLF data-set gives a realistic determination of the intrinsic radial velocity variation of the Sun, then the Sun is a far noisier star than HD 69830 (and other similarly old, early K-dwarfs). Indeed, you would even be hard-pressed to believe the presence of Jupiter in the GOLF time-series, unless you’ve got the luxury of waiting for at least several Jovian orbital periods.

dialing 411

Image Source.

Update: The original version of this post tagged systemic003 as the target system and systemic004 as the control system. It’s actually the reverse. In any case, we’re interested in getting multiple fits to both systems. -GL

No post today, just a request:

We’ve been doing an analysis of the detectability of low-mass planets around certain types of stars. In the course of this work, we’ve generated a radial velocity data set, systemic004, which may (or may not) harbor a planetary system. I’d like to ask everyone to (1) download the latest version of the console, and (2) submit your fits to the systemic004 system to the backend. We’ve also included a control system, systemic003, which may look familiar. It would be very useful to have your fits to that system as well.

Thanks in advance! Once we get a batch of fits, I’ll write a post that explains the motivation underlying this request…

Viewed from afar (Challenge 004)

Image Source.

The fourth systemic challenge turned out to be somewhat less challenging than the first three. Quite a few entrants figured out that the data-set corresponds to our own solar system. Among a large number of excellent models, Mark Kilner turned in the fit with the lowest chi-square: 1.0401. In addition to Jupiter, Saturn, Earth, and Venus, he topped off his system with a spurious Mercury-mass planet in a 5.62 day orbit, which allowed him to take the prize. Nice one, Mark!

Eugenio created the challenge 004 synthetic data set after a conversation in which we decided that it’ll soon be feasible to push the precision of the radial velocity method down to an instrumental error of 0.1 m/s. Even more optimistically, we assumed that the Sun, viewed from afar, exhibits negligible radial velocity noise (more on that soon).

Our Solar System, expressed in the Jacobi orbital elements used by the console, is given by:

The true three-dimensional model that Eugenio actually integrated to produce the synthetic data set also includes the correct values for the planetary inclinations and nodes. Because of the sin(i) degeneracy for Keplerian orbits, the current version of the downloadable systemic console does not include the inclinations and nodes as fitting parameters.

The synthetic data set was created with the KeckTAC program, which mimics realistic observing strategies. In an all-out effort on a particular star, one would combine repeated individual observations to get a composite observation that averages over the effect of short-period oscillations (p-modes) of the star itself. This is the strategy that is being currently used by the Swiss team in their campaigns on stars such as HD 69830 and HD 160691. In the challenge004 dataset, there are 1171 radial velocity measurements spread out over 24 years.

Eugenio describes the procedure he used to fit the data:

The periodogram (and the data) shows Jupiter clearly. Saturn appears as a trend, but the periodogram of the residuals after fitting Jupiter gives a good guess for Saturn’s period. After removing Saturn, Earth pops out in the residuals periodogram. I did not find it easy to fit Jupiter, Saturn, and Earth, but after succeeding, Venus very clearly appears in the residuals. I kept on fooling around with the 4-planet fit to see if there was any chance of finding Mars even though the RMS was telling me that 4 planets was the best that I would likely do. I was hoping that N would be large enough to let me get Mars, but I was not able to see a (significant) signal in the residuals periodogram. If anything, Mercury seemed to be more easily detectable. However, after fooling around with the eccentricities of Saturn, Earth, and Venus, the (weak) signal for Mercury disappeared.

Image Source.

With the contests wrapped up, we’re now in the business of getting the fits completed for the Systemic Jr. data set. Eugenio recently incorporated an F-test module into the console, which can be used to determine whether the addition of a planet is warranted. We’ll have a post up shortly that explains in detail how this works. In the meantime, see the discussion on the backend, or download a new console and give its new modules a whirl.

1:2:4

Image Source.

The third Systemic Challenge closed to entries on Friday, and I’ve gone through and evaluated the submitted fits. The results were very encouraging. Eight out of twenty-five submissions corresponded to both the correct orbital configuration and the correct number of planets in the underlying dynamical model.

For challenge 003, we looked to our own solar system for inspiration, and tapped the four Gallilean satellites of Jupiter. Eugenio writes:

The system is a scaled-up version of Jupiter and the four Galilean satellites. To generate the model, I first set the central mass to 1 solar mass. The (astrocentric) period of Callisto was set to 365.25 days, and I required that the mass and (astrocentric) period ratios in the system would remain the same. Here’s the resulting model (using Jacobi elements, with i~88 deg):

The Challenge 003 System
Parameter “Io” “Europa” “Ganymede” “Callisto”
Period (days) 38.77079 77.77920 156.65300 365.42094
Mass (Jupiters) 0.04926 0.02646 0.08175 0.05936
Mean Anomaly (deg) 99.453 50.772 285.591 47.538
eccentricity 0.003989 0.009792 0.001935 0.007547
omega (deg) 31.229 205.427 303.460 359.879

Among the eight entries that got both the total number of planets and their periods correct, there was a fair amount of variation among fits that had nearly equivalent values for the chi-square statistic. Chuck Smith (among others) turned in a configuration that bears a very strong resemblance to the actual input system. The four planets in his fit all have nearly circular orbits:

and the resulting radial velocity curve does a very good job of running through the data, with a chi-square value for the integrated fit equal to 1.1005:

A number of other users turned in very similar configurations.

Because of random measurement errors in the data, the true underlying planetary configuration will not necessarily provide the best fit to a given set of radial velocity observations. Often, a better fit can be found for a configuration that is different from the system that generated the data. Steve Undy, for example, achieved a slightly lower chi-square value for his fit by giving a very significant eccentricity to his “Europa”:

The winner of the contest, however, was Eric Diaz, who submitted a 6-planet fit that achieves an integrated chi-square value of 1.04. In addition to the four planets that are actually present in the model, Eric added small planets with periods of 1.06 days and 18.11 days. These objects soaked up some of the residual noise in the fit, allowing for a lower chi-square value, and a copy of the Sky and Telescope star atlas. Nice job Eric!

The contest raises some interesting issues. First, at what point should one stop adding planets to a fit? The chi-square statistic penalizes the inclusion of additional free parameters in a fit, but it’s clear that chi-square can nearly always be lowered by adding additional small bodies to the fit. Second, its very encouraging to see that subtle, but substantially non-interacting systems can be pulled out of radial velocity data sets. In this system, the masses of the planets are small enough so that their dynamical interactions with eachother are not significant over the time-frame that the system is observed. This is in stark contrast to systems such as GJ 876 and 55 Cancri where it is vital to take interactions into account (by fitting with the integrate button clicked on). Finally, I think that we’ll soon see examples of the 1:2:4 Laplace resonance as competitive fits within the existing catalog of radial velocity data sets on the systemic backend.

Gamma Cephei

Image Source.

Guillermo Torres of the CfA recently posted an interesting article on astro-ph in which he takes a detailed look at the planet-bearing binary star system Gamma Cephei.

Gamma Cephei has a long history in the planet-hunting community. In 1988, Campbell, Walker and Yang published radial velocity measurements which show that Gamma Cephei harbors a dim stellar-mass companion with a period of decades. More provocatively, they also noted that the star’s radial velocity curve shows a periodicity consistent with the presence of a Jupiter-mass object in a ~2.5 year orbit around the primary star. In a 1992 paper, however, they adopted a cautious interpretation of their dataset, and argued that the observed variations were likely due to line-profile distortions caused by spots on the stellar surface. From their abstract:

In 1988 Gamma Cep was reported as a single-line, long-period spectroscopic binary with short-term periodic (P = 2.7 yr) residuals which might be caused by a Jupiter-mass companion. Eleven years of data now give a 2.52 yr (K = 27 m/s) period and an indeterminate spectroscopic binary period of not less than 30 yr. While binary motion induced by a Jupiter-mass companion could still explain the periodic residuals, Gamma Cep is almost certainly a velocity variable yellow giant because both the spetrum and (R – I) color indices are typical of luminosity class III. T eff and the trigonometric parallax give 5.8 solar radii independently.

In October 1995, 51 Peg b was announced, and exoplanet research was off to the races. The Walker team, with their futuristic RV surveys had seemingly come close to success, but had not managed to snag the cigar.

In the Fall of 2002, however, the planetary interpretation for the Gamma Cephei radial velocity variations was revived by Hatzes et al., who used McDonald Observatory to extend the data set. They showed that the 2.5 year signal has stayed coherent over two decades, thus effectively ruling out starspots or other stellar activity as the culprit. The planet clearly exists.

Aside from providing a pyrrhic victory for the Walker team, the Gamma Cephei planet is a remarkable discovery in its own right. Its presence showed that gas giants can form in relatively long-period orbits around binary stars of moderate period. In their discovery paper, Hatzes et al. assumed that the binary companion orbits with a period of 57 years, but other estimates varied widely. Walker et al. (1992), for example, adopted 29.9 years, whereas Griffin (2002) use 66 years. The mystery is strengthened by the fact that to date, the companion star has never been seen directly.

The details of the orbit of the binary star are of considerable interest. For configurations where the periastron approach is relatively close, simulations show that the star-planet-star configuration can easily be dynamically unstable.

In his new article, Torres methodically collects all of the available information on the star, and shows that the binary companion to Gamma Cephei has a 66.8 +/- 1.4 year period, an eccentricity of e=0.4085 +/- 0.0065, and a mass of 0.362 +/- 0.022 solar masses. The orbital separation thus lies at the high end of the previous estimates, and renders the stability situation for the system considerably less problematic.

We’re stoked about the Torres paper because it provides references to some truly ancient radial velocities, dating all the way back to a compendium published by Frost and Adams in 1903:

who report 3 measurements made at the University of Chicago’s Yerkes Observatory:

Eugenio has tracked down the various references in the Torres paper, and has recently added all of the available old-school RV’s for Gamma Cephei to the downloadable console. You can access the full dataset by clicking on “GammaCephei_old”:

It’s straightforward to manually adjust the offset sliders to put the radial velocities on a rough baseline. You can then build a rough binary star fit with the sliders, followed by repeated clicking on the Levenberg-Marquardt polish button, with the five orbital elements and the five velocity offsets as free parameters. This gives an Msin(i)=386 Jupiter masses, a period of 24,420 days, and an eccentricity, e=0.4112. Try it! The values that you’ll derive are in excellent agreement with the Torres solution:

With the binary fitted out, try zooming in on the more recent data from the past 10-20 years. You’ll see that the modulation of the radial velocity curve arising from the planet is faintly visible even to the eye. It’s interesting to go in and find the best-fit planetary model…