Posts Tagged ‘Gliese 876’

Red Dwarf Metallicities

January 17th, 2010 11 comments

A core prediction of the core accretion model for giant planet formation is that the frequency of readily detectable giant planets should increase with both increasing stellar metallicity and with increasing stellar mass:

It’s now well established that the above diagram is zeroth-order correct, but until fairly recently, the conventional wisdom held that there is little evidence for a strong planet-metallicity correlation among the handful M-dwarf stars (for example, Gliese 876) that are known to harbor giant planets. One is then naturally led to speculate that the odd giant planets in a systems like Gliese 876 might be the outcome of gravitational instability rather than core accretion.

The profusion of molecular lines in the atmospheres of M dwarfs make it hard to determine their metallicities using the techniques of spectral synthesis that work well for hotter stars like the Sun. Fortunately, though, the red dwarfs’ legendary stinginess provides another opportunity for assessing metallicity. Red dwarfs are so thrifty, and they evolve so slowly, that every single one that’s ever formed has barely touched its store of hydrogen. With all the fuel gauges pegged to full, a critical parameter’s worth of confusion is removed. Red dwarfs of a particular mass should form a well-defined one-parameter sequence in the Hertzsprung Russell diagram, and that parameter should be metallicity. If one can accurately plot a particular low-mass star on a color-magnitude diagram, then there should exist a unique and high-quality mapping to both the star’s mass and its metallicity. Physically, an increase in metallicity leads to a higher photospheric opacity, which provides an effective layer of insulation for a star. Add metals to a red dwarf and it will move down and to the right in the Hertzsprung Russell diagram.

Because of the nightmarish complexity of red dwarf atmospheres, it’s not easy to find the calibration that allows one to make the transformation between an observed absolute magnitude and color index (e.g. M_K and V-K) to the stellar mass and metallicity. In 2005, however, Xavier Bonfils and his collaborators made a breakthrough by employing a simple should’ve-thought-of-that-myself technique: Binary stars generally stem from a common molecular cloud core, and so the members of a binary pair should thus generally have very similar metallicities. In particular, if you measure the metallicity of an F, G, or K binary companion to an M-dwarf, then you can assume that the M-dwarf has the same metallicity. Do this often enough, and you can infer the lines of constant M-dwarf metallicity on a color-magnitude diagram. With the calibration in place, metallicity determinations for field red dwarfs are simply a matter of reading off the nearest iso-metallicity locus. Here’s the key diagram from the Bonfils et al. paper:

The puzzling outcome of the Bonfils et al metallicity calibration was that the rare giant-planet bearing M-dwarfs such as Gliese 876 and Gliese 849 didn’t appear to be particularly metal rich, and that worked to undermine confidence in the core accretion picture. One would naively expect that a low-mass disk will need all the help it can get in order to build giant planet cores before the gas is gone. If anything, the planet-metallicity correlation should be strongest among the M-dwarfs.

Important recent progress was made last year by John Johnson and Kevin Apps, who published a reevaluation of Bonfil et al’s. isometallicity loci in the color-magnitude diagram. Johnson and Apps point out that application of the Bonfils et al. calibration produces an aggregate of local M-dwarf stars that have a significantly lower average metallicity than that for the local FGK stars. There’s little reason to expect such a dichotomy, which implies that the Bonfils et al. correlation may be systematically underestimating metallicity by roughly a factor of two. No small potatoes!

Johnson and Apps adjusted the calibration to bring the metallicities of the local M dwarfs into line with the metallicities of the local FGK dwarfs. Here’s a slightly adapted version of their key diagram:

With the revised calibration, Gliese 876 turns up with a metallicity twice that of the Sun, and there is excellent evidence that the planet-metallicity correlation holds strongly for the M dwarfs that harbor relatively massive planets. Furthermore, it’s hard to argue with the two recent papers (one, two) from the California Planet Survey which report the detection of relatively massive planets orbiting two nearby M dwarfs, both of which have extremely high metallicities with the revised calibration.

The statistics are still small-number, but there’s a strong hint that the planet-metallicity correlation for Neptune and sub-Neptune mass planets orbiting M-dwarfs is stronger than it appears to be at FGK (where it’s effectively non-existent). Gliese 176, and Gliese 436, for example, are both quite metal-rich. I bet that a survey like Mearth could jack up its yield by shading its telescope visits to favor the high-metallicity stars on the observing list…

Indeed, if we plot Gliese 1214 (V=15.1±0.6, K=8.78±0.02, parallax=0.0772±0.0054”, distance modulus=0.562±0.16) in comparison to the stars in the local volume, it looks like Gliese 1214 has of order twice solar metallicity if we adopt the nominal values for V,K and the distance. That’s very intriguing…

lithium-induced speculations

November 22nd, 2009 1 comment

Lithium Depletion

Israelian et al’s Nature paper on the planet-stellar lithium correlation (featured in last week’s post) caused quite a stir in the community. The depletion of lithium in the atmosphere of a solar-type star seems to be a prerequisite for the presence of a detectable planetary system. Here’s the paper’s plot again, this time, with Alpha Cen A added for effect. lithiumwalphacen

Had Israelian et al.’s paper come out a decade ago, much of the ensuing hubub would have focused on the fact that low lithium abundance is an effective signpost to planetary systems. Nowadays, though, mere detection of new planets is passé. Everyone knows there are tons of planets out there. Focus is shifting to finding the lowest-mass (and preferably transiting) planets around the brightest M, K, and G main sequence stars in the Sun’s neighborhood. There is a short, highly select, list of worlds that have been, and will eventually be, followed up to great advantage with HST, Warm Spitzer, and JWST.  All of the Sun’s most alluring stellar neighbors are under heavy and ongoing scrutiny, and in fact,  it’s these particular stars (in the form of the HARPS GTO list) that enabled discovery of the planet-lithium correlation.

So planet-finding utility aside, the intense interest in the planet-lithium effect stems from the fact that it’s guaranteed to be imparting an important clue to the planet-formation process.

With over 400 planets known, clear populations are starting to emerge. It’s remarkable that the strength of the lithium-planet correlation seems to be largely independent of the masses and periods of the planets themselves. The mass-period diagram for planets, on the other hand, shows that there are at least three distinct concentrations of planet formation outcomes:


It’s important to keep in mind that Israelian et al.’s correlation holds over only a very narrow range of stellar temperature. The M-dwarfs (Gliese 581, Gliese 876), the K-dwarfs (HD 69830, Alpha Cen B), and the F-dwarfs (Upsilon Andromedae) all fall outside the band of utility. This dovetails nicely with standard models of stellar evolution that suggest the amount of Lithium depletion in stars with masses very close the the Sun (that is, stars falling in the narrow effective temperature range of the above plot) depends sensitively on both the efficiency of convection and also on rotational mixing. That is, the stars that show the lithium-planet effect, are exactly the stars where subtle differences in properties seem to generate a big effect on lithium abundance.

After writing last week’s post, I got an e-mail from Jonathan Irwin (of MEarth fame) who makes several interesting points:

The low lithium could be more of a coincidence resulting from the long-lived circumstellar disks that are presumably needed to form planets.

Mediation of the stellar rotation rates by long-lived disks is thought to be responsible for generating the wide dispersion in rotation rates observed in open clusters around 100Myr age, and there have been suggestions (e.g. Denissenkov et al.’s paper that appeared on astro-ph 2 weeks ago) that the slowly-rotating stars evolve developing some degree of decoupling of the rotation rates of their radiative core and convective envelope, whereas the rapidly-rotating stars evolve more like solid bodies.

Bouvier (2008) has suggested that the shear at the radiative convective boundary resulting from this could mix lithium into the interior more efficiently, and thus could result in lower lithium for stars that were slow rotators, preserving evidence of their rotational history even though the final rotation rates all converge by the solar age.  Some evidence for this last part exists in the form of a correlation between rotation and lithium in young open clusters such as the Pleiades.

A hypothesis along these lines seems quite appealing to me. As long as a protoplanetary disk is present, and as long as its inner regions are sufficiently ionized, then there’ll be a connection between the stellar magnetic field and the magnetic field of the disk. To a (zeroth) degree of approximation, the equations of ideal MHD allow us to envision the situation as consisting of a rapidly rotating star connected to a slower-rotating disk by lot of weak rubber bands. The net effect will be to slow down the stellar rotation to bring it into synch with the rotation at the inner edge of the disk.

Trying to sound like a tough-guy, I stressed the importance of predictions in last weeks post. If Irwin’s hypothesis is correct, then the formation of the Mayor et al. 2008 planet population is associated with disks that contain lots of gas, even in regions interior to R~0.1 AU. I’d thus expect that the “super Earths” are actually “sub Neptunes”, and that we can expect considerable H-He envelopes for the majority of these planets.

Another speculative prediction concerns the stars that aren’t depleted in lithium. In Irwin’s picture, these stars had short-lived disks and lost their gas relatively rapidly. This shouldn’t hinder the formation of terrestrial planets, but one would expect that the final configurations of the rocky planets would sport higher eccentricities, as there was little or no gas to damp the orbits down during the final stages of terrestrial planet accretion (see this paper for more on this).

On track

May 23rd, 2009 1 comment

It’s gratifying to see that Gliese 581 e lands right on a trend line that’s held up for over two decades and a factor of two thousand in planetary mass. It’s amazing that within a year, we’ll be in possession of genuinely Earth-mass planets orbiting nearby stars.

Exoplanetary science has been in high gear now for fifteen years; the first Earth-mass planets are a big-picture milestone, on par with the discoveries of 51 Peg b, Ups And c and d, HD 209458 b and Gliese 876 d. Even more significantly, I think that an Earth-mass planet on the books is going to catalyze a huge shift in emphasis from planetary detection to planetary characterization. The first Mars-mass exoplanet will be met with considerably less acclaim than the first Earth-mass planet. In coming years, the marquee goal of planet hunting will be to locate both representative and particularly unusual planets around the brightest stars possible…