Archive

Posts Tagged ‘Spitzer’

Follow Up

January 14th, 2010 3 comments

Astronomers worldwide staggered into work this morning, some of them rudely elbowing their way to the front of the lines at the espresso machines, clear evidence that events surrounding the January 2010 ’606 holiday season have finally drawn to a close.

Hopefully the data will turn out to be of high quality! As I mentioned in yesterday’s post, ground observers in both Europe and North America were out in force for the event, collecting photometric and spectroscopic data. The action was covered from space as well. We were awarded a generous 84-hour block of time on Warm Spitzer. The telescope started collecting 4.5-micron photometry more than a day prior to the secondary transit, and ended more than two days after the periastron passage.

What do we hope to learn? By observing the run-up to the secondary transit, we should be able to establish an improved baseline temperature for the planet, which should afford a better sense of how much tidal heating is occurring. And during the days following periastron, we expect to see a near-complete drop-off in flux from the planet as the periastron nightside hemisphere rotates fully into view. The 2007 observations came to a frustrating end just as this should have been starting to occur.

In addition to the secondary eclipse and the ground-based observations, Guillaume Hebrard and his collaborators were awarded 19 hours on Warm Spitzer to observe the primary transit at 4.5 microns. Their photometric time series will enable an improved radius measurement for the planet — both because of the highly accurate photometry and because the effects of stellar limb darkening are negligible in the infrared. Their time series will establish a very precise ephemeris for the transit, which will enable future observations to monitor the system for orbital precession.

Looking forward to the results…

Categories: worlds Tags: , ,

Zen++ for film

April 5th, 2009 Comments off

Zen++ for film

Jonathan Langton took the Spitzer 8-micron time-series for HD 80606b and transformed it into a movie of an actual extrasolar planet. The money-minded studio execs, having never seen the the successful prequel, decided that the full 30-hour version might not do well in theaters, so the original “Director’s Cut” had to be edited. The final result? Thirty hours of one-pixel, gray-scale footage have been compressed into a 10-second movie showing the excitement surrounding perihelion at a rate of 3 hours per second.

Be sure to watch for the secondary eclipse!

Categories: worlds Tags: ,

What’s your angle?

February 8th, 2009 Comments off

P. Diddy flossing his '606 pose.
Happy ’606 day!

HD 80606b swung through periastron at about 01:40 UT this morning (Feb. 8, 2009) and will spend the balance of the week spinning out toward inferior conjunction, which will occur at 00:50 UT on Valentine’s day (Feb. 14th).

Proposals for GO-6, the first general observing cycle of the forthcoming Spitzer Warm Mission, were due on Friday. Jonathan and Drake and I worked right down to the 5 PM PST wire, polishing our request to complement the Nov. 2007 8-micron periastron observations with a pair of additional photometric time series at 4.5 microns (Warm Spitzer’s longest IR wavelength). Two HD 80606b events are observable during GO-6; the first at the very start of the warm mission on May 30, 2009, and the second on Jan 08, 2010. We’re keen to watch the planet ring down from its maximum brightness, so we’ve proposed for a window that runs from 10 hours before periastron to 30 hours after periastron. In the 4.5 micron bandpass, we’re predicting a maximum planet-to-star flux ratio of a bit more than one part in a thousand — easily within Spitzer’s sensitivity.

Here’s a diagram showing the portion of the orbit that we’re proposing to observe. Even though the orbital period is 111.43 days, our forty-hour proposed observation encompasses more than 200 degrees of true anomaly. A planet with e=0.932 is quite truly anomalous.

In the near term, though, I’m very eager to see what shows up in my inbox on Valentine’s day, when observers across the Northern Hemisphere will be monitoring HD 80606 to ascertain whether a primary transit for the planet can be observed.

Here’s the geometric situation. If HD 80606′s orbit were inclined only negligibly to the sky plane, then Earth’s view of the system would be a simple reflection of the standard diagram. At inferior conjunction, six days after periastron, the planet is heading away from the star and slightly toward Earth:

The occurrence of the secondary transit tells us, however, that the orbital inclination relative to the sky plane is in reality close to 90 degrees. Using the Illustrator scale tool to compress along the north-south direction, we can see the result of increasing the inclination.


“Sooner can a camel thread the eye of a needle…”

Categories: worlds Tags: , , ,

The Big Swing

January 29th, 2009 3 comments

Image from computer modeling by J. Langton and D. Kasen.

HD 80606b — everyone’s second-favorite planet — is in the news! Our article describing the Spitzer Space Telescope’s 8-micron observations of the planet’s periastron passage made the cover of this week’s issue of Nature, and JPL has issued a press release on the results.

The planet has been a long-running topic here at oklo.org, with the storyline developing over a series of posts during the past few years. A incomplete list might include:

Post one (older), two, three, four, five, though six (newer).

The outsize eccentricity of HD 80606b’s orbit leads to very brief, very intense encounters every 111.4 days as the planet swings through periastron. On the Nov. 20, 2007 encounter, we used Spitzer to monitor the 8-micron emission of the star and planet for a thirty hour period. The observations spanned the time leading up to superior conjunction and periastron, and continued for several hours thereafter:

The resulting time series looks like this:

The most remarkable feature of the light curve is the dip at time 2454424.72. The alignment of the planetary orbit turns out to be close enough to edge-on that a secondary eclipse occurs. The a-priori chance of observing the eclipse was only about 15%, and so we were lucky. Our interpretation of the light curve is that we’re seeing the planet heat up rapidly, from a temperature of roughly 800K to a temperature of about 1500K over a time period lasting roughly five or six hours. This indicates that the starlight is being absorbed at quite a high level in the atmosphere, where the air is thin and the heat capacity is low.

The details are all in the Nature paper. I’ll be posting it on astro-ph shortly, but in the meantime, a .pdf draft of the article is here, along with the (quite extensive) supplemental information section, and the figures (one and two) from the article.

The information that comes directly from Spitzer amounts to a 30-hour, one-pixel grayscale movie of a storm that was brewing on the planet back in the Monroe Administration. Hydrodynamical modeling, however, can flesh out the details, and the goal over the coming years will be to compute simulations that are as detailed and as physically correct as possible. In the next post, I’ll go into more detail, but here’s an advance look at the results of a “synthetic mission” in which a probe has been inserted into orbit around the planet 2.2 days prior to periastron. The resulting footage runs through 8.9 days after periastron. The orbital dynamics and the illumination are all self-consistent…

Footage from a synthetic probe.

Coming soon…

January 27th, 2009 1 comment


Download the poster-size version (4.4MB).