Electra

FullSizeRender2222015
Have you noticed that the Internet can seem slow? Sometimes it takes a long time for web pages to load. It would really be better if they would just snap up instantly on the screen.

In practice, “instant” response occurs if the latency is less than ~1/30th of a second, or ~30 msec. Animation at thirty frames per second looks smooth. Only a small minority of the population has the retinal read-out frequency required to see that the Crab pulsar is flashing at 33.5 msec intervals.

Coincidently, the speed-of-light travel time along the (almost entirely overland) great circle route between Tokyo and New York is (to within a millisecond) the same as the Crab Pulsar’s current spin period. In theory, it should possible to load Japanese-sourced web pages with barely perceptible latency, as the service of a request involves a round-trip.

Screen-Shot-2015-02-22-at-5.17.14-PM

The fastest communication between Japan and the West Coast of the United States is via NTT’s PC-1 cable, which runs between cable landings at Ajigaura (near Tokyo) and Harbour Pointe (near Seattle). Round-trip communication on the cable takes 80 msec, which, given that the speed of light in optical fiber is ~1.44x slower than the speed of light in vacuum, indicates that cable must adhere fairly closely to the great circle route beneath the Pacific.

Here’s an interesting paper by Ankit Singla and his collaborators which explores the various drag terms that keep the Internet from actually running at the speed of light. As part of their research, they report on 20+ million measurements of 28,000 web urls served from 120+ countries. The cumulative distribution function of all that pinging points to a median latency for loading html that is ~40x slower than if the message was covering the inferred great circle distance at the speed of light in vacuum.

Screen-Shot-2015-02-22-at-5.52.43-PM

Singla et al. argue that the speed doesn’t have to be so slow:

A parallel low-latency infrastructure: Most flows on the Internet are small in size, with most of the bytes being carried in a small fraction of flows. Thus, it is conceivable that we could improve latency for the large fraction of small-sized flows by building a separate low-latency low-bandwidth infrastructure to support them. Such a network could connect major cities along the shortest paths on the Earth’s surface (at least within the continents) using a c-speed medium, such as either microwave or potentially hollow fiber. Such a vision may not be far-fetched on the time horizon of a decade or two.

Even a decade might be an overestimate. As oklo.org readers know, during the past several years, a secretive fleet of microwave networks have sprung up to transfer information between the Chicago and New York metro areas at as close to the speed of light as possible. The fastest of these networks now transmit within ~2% of the physical minimum. Tremendous efforts have gone into squeezing out every last source of delay.

It’s thus interesting to look at what a national low-latency microwave backbone might look like. To optimize on costs, and to minimize connection times, one wishes to connect a number of nodes (metropolitan areas) with the minimal complement of route segments. This task, known as the Steiner tree problem has an interesting history, and computationally, is non-deterministic polynomial-time (NP) hard. One can get analog solutions by placing a board with pegs representing the nodes into soapy water. The connective soap bubble films are physical representations of the Steiner trees:

Screen-Shot-2015-02-22-at-10.03.46-PM

I coded up a Steiner tree finder using an incremental optimization algorithm, and ran it on the top 20 metro areas in the US by populations, which (ranked according to distance from their centroid) are:

1 DFW
2 MSP
3 ORD
4 IAH
5 DIA
6 ATL
7 COL
8 DTW
9 DCA
10 PHX
11 TPA
12 PHL
13 NYC
14 MIA
15 SAN
16 LAX
17 BOS
18 SFO
19 PDX
20 SEA

The algorithm, which employs the Vicenty distance formula between points on the Earth’s surface, and which is not guaranteed to find the absolute shortest route, links the 20 cities with a total path length of 9,814km, about 10x the length of a NYC-CHI route:

Screen-Shot-2015-02-16-at-8.13.20-PM

The added interconnecting nodes on the tree are the Steiner points. A prominent example on the map above connects Dallas and Denver with the Minneapolis-Chicago interconnect point, and lies in an obscure field a few miles south of Haven, Kansas.
Screen-Shot-2015-02-22-at-10.22.12-PM
Remarkably, when one zooms in on the exact spot, and settles into street view, there’s a red and white microwave tower a hundred meters or so from the actual Steiner point.
Screen-Shot-2015-02-22-at-10.24.05-PM
Rather fittingly, the tower has three dishes, indeed, pre-aligned and pointing in what appears to be the requisite directions…
Screen-Shot-2015-02-22-at-10.21.49-PM
The Gaia hypothesis, was introduced by James Lovelock in the 1970s and “proposes that organisms interact with their inorganic surroundings on Earth to form a self-regulating, complex system that contributes to maintaining the conditions for life on the planet.”

As the planet wires itself and its computers ever more tightly together in an ever-lower latency web of radio links and optical fiber, it no longer seems like a particular stretch to float an Electra hypothesis in which computational nodes and their interconnections assume a global role comparable to that now filled by the biological organisms.

The Machine Epoch

Screen-Shot-2015-02-14-at-6.23.47-PM

In looking through oklo’s activity logs, it is evident that many of the visitors are not from the audience that I have in mind as I write the posts. The site is continually accessed from every corner of the planet by robots, harvesters, spamdexing scripts, and viral entities that attempt to lodge links into the blog.

A common strategy consists of attempts to ingratiate with generically vague comments of praise:

Screen-Shot-2015-02-13-at-11.51.48-AM

The Turing test was envisioned as a text-only conversation with a machine. The machine passes the test if it can’t be distinguished from a real person. In Alan Turning’s Computing Machinery and Intelligence, he asks, “Are there imaginable digital computers which could do well in the imitation game?”

For now, the general consensus seems to be no. Machines can’t consistently pass the test (and the test itself seems increasingly dated), but their moment is approaching fast. Judith Newman’s recent NYT article about interaction with the iPhone’s Siri telegraphs the stirrings of the current zeitgeist.

The economics of comment spam must be relatively minor. Were serious money was at stake, a Nice Post! robot armed with state-of-the-art-2015 natural language processing skills and tuned to the universe of text strings and facts could almost certainly pull the wool over my eyes.

Screen-Shot-2015-02-14-at-6.29.23-PM

In early 2001, I was working at NASA Ames Research Center. The first Internet Bubble hadn’t quite ended. Highway 101 was a near-continual traffic jam. Narrow billboard trucks advertising this or that dot com were still cycling aimlessly up and down the Peninsula. We had just published our plan to move the Earth in response to the gradually brightening Sun.

I got an e-mail with a stanford.edu address from someone named John McCarthy, who asked if he could come to NASA Ames to talk with us about astronomical engineering. This was before the Wikipedia, and for me, at least, before the ingrained reflex to turn to the web for information about someone one doesn’t know. I just wrote back, “Sure!”

I recall McCarthy in person as a rather singular character, with a bushy white beard surrounding thick black glasses. He had a rattletrap car with a bulky computer-like device somehow attached next to the steering wheel. My co-author, Don Korycansky, was there. I remember that the conversation was completely focused on the details of the orbits and the energy budgets that would be required. We didn’t engage in any of the far-out speculations or wide-eyed ramifications that thrust us, as a result of my ill-advised conversation with a reporter a few weeks later, into a terrifying worldwide media farce.

Only later did I realize that John McCarthy was one of the founding giants of computer science. He coined the term Artificial Intelligence, invented Lisp, and was famous for his Usenet .sig, “He who refuses to do arithmetic is doomed to talk nonsense.”

McCarthy’s Progress and Sustainability web pages (online at http://www-formal.stanford.edu/jmc/progress/index.html) are dedicated to the thesis of optimism — that human progress is desirable and sustainable. He wrote, “There are no apparent obstacles even to billion year sustainability.” In essence, the argument is that the Anthropocene epoch, which began at 05:29:21 MWT on July 16, 1945, will stretch to become an eon on par in duration with the Archean or the Proterozoic.

Optimistic is definitely the operative word. It’s also possible that the computational innovations that McCarthy had a hand in ushering in will consign the Anthropocene epoch to be the shortest — rather than one of the longest — periods in Earth’s geological history. Hazarding a guess, the Anthropocene might end not with the bang with which it began, but rather with the seemingly far more mundane moment when it is no longer possible to draw a distinction between the real visitors and the machine visitors to a web site.

Epicycles

Screen-Shot-2015-02-08-at-2.10.36-PM

Vladimir Arnold, he of the A in KAM Theory, wrote a classic graduate text entitled Mathematical Methods of Celestial Mechanics. This, as one might imagine, is a book that is not exactly a storehouse of easy homework assignments. There are, however, a scattering of problems that offer insights while, at the same time, not actually requiring the tough-guy methods that are the text’s primary focus.

During his walk in outer space [as part of the Voskhod 2 Mission on 18 March 1965], the cosmonaut Alexey Arkhipovich Leonov threw the lens cap of his movie camera toward the Earth. Describe the motion of the lens cap with respect to the spacecraft, taking the velocity of the throw as 10 m/s. Neglect the asphericity of the Earth.

Screen-Shot-2015-02-08-at-11.59.02-AM
(Ria Novosti/Science Photo Library)

Leonov’s space walk tipped off a hair-rising adventure which began with his being nearly unable to re-enter the spacecraft, and ended with a frigid way-off-course landing in the Siberian Tiaga, all of which is covered in a recent BBC documentary.

One can hand-crank the problem by noting that the radially directed, \({\bf v}_{i}=10\,{\rm m\,s^{-1}}\), launch of the lens cap exerts no torque, so that \({\bf r}\times{\bf v}_{i}=0\), whereas the total specific energy of the lens cap’s initial orbit, \(-GM_{\oplus}/2a\) is augmented by \(\frac{1}{2}v_{i}^{2}\). Given the new semi-major axis, \(a_{\rm new}\) and the before-and-after conservation of \(h=(GM_{\oplus}a_{\rm new}(1-e^2))^{1/2}\), one can solve for \(e\), and then proceed to all four orbital elements by noting that \(r=a(1-e\cos E)\) and \(M=E-e\sin E\), and then working out the longitude of pericenter, \(\varpi\), relative to the reference direction defined by the radius vector from the Earth’s center to the point where the lens cap was thrown. Clumsy.

The guiding center approximation revives the old idea of epicycles to describe the motion of a particle (in this case, the lens cap) on a low eccentricity orbit. For modest \(e\), the true Keplerian motion is approximated as a compound of the circular motion of a “guiding center” and the counter-directed motion about the guiding center on a 2:1 ellipse, where the semi-minor axis is oriented radially, and has length \(ae\). Both motions complete once per orbital period. Here’s the basic idea, drawn for an orbit with \(e=0.3\), which is actually quite a substantial eccentricity:

Screen-Shot-2015-02-08-at-2.14.40-PM

For the lens cap problem, the guiding center materializes at a distance \(2ae\) ahead of the launch point. The motion associated with the guiding center is the superposition of two simple harmonic motions. For the radial oscillation, \(\frac{1}{2}v_{i}^{2}=\frac{1}{2}n^{2}x^{2}\rightarrow v_{i}=nae\), which works out to \(e=0.0013\). To first (and very good) approximation, the lens cap arrives back 88 minutes later in the close vicinity of the spacecraft, after inward and outward radial excursions of 8.4 km, and after leading the spacecraft by as much as \(4ae=34\) km. The small total gain in orbital energy lengthens the lens cap’s orbital period slightly, which means that the cap fails to catch up by a few tens of meters at the end of a full one-orbit epicyclic oscillation.

In Michael Rowan-Robinson’s Cosmology (3rd ed.) Oxford University Press. pp. 62–63, one finds, “It is evident that in the post-Copernican era of human history, no well-informed and rational person can imagine that Earth occupies a unique position in the universe.”

If one insists on a strictly inertial frame, I guess that’s true, but non-inertial frames often have more value. Thousands of extrasolar planets have been found, and not one of them is remotely habitable. Many lines of evidence are beginning to point toward an Earth that is unique, probably in the galaxy, and perhaps, even, in the accessible universe. In the post-post Copernican era, epicycles (2:1, rather than 1:1) have a certain appeal. And indeed, there’s nothing inherently wrong about the Tychonic model of the solar system, it simply subscribes to an Earth-centered point of view. Don’t we all?

On the topic of epicycles, I have to say I wasn’t a fan of the article on “retrograde beliefs” that appeared a few weeks ago in the New York Times Magazine. Obviously, astrology is a bunch of bunk. It’s known to be wrong. One can make the argument that taking it down in the genteel and informed confines of the NYT magazine amounts to shooting fish in a barrel. Satire is probably the best approach. Aside from this stylistic quibble, the writing in the NYT piece seems incoherent, somehow second-hand and artless. An intricate 1756 diagram by James Ferguson (who is no longer around to defend his work) is given a rather underhanded misrepresentation:

Screen-Shot-2015-02-08-at-6.15.31-PM

The full title of Ferguson’s book is Astronomy Explained Upon Sir Isaac Newton’s Principles, And Made Easy to Those who Have Not Studied Mathematics. The diagram reproduced in the NYT is not the product of some recalcitrant Ptolemaic view as implied in the caption, but rather appears in a chapter entitled “The Phenomena of the Heavens as seen from Different Parts of the Solar System”. It shows the intricate motions of the inferior planets in a co-rotating Earth-centered frame, and Ferguson gives a fascinating description of the analog-computational method he used to create the diagram:

Screen-Shot-2015-02-08-at-6.45.41-PM

Exhaustive new review article on exoplanets.

Screen-Shot-2015-02-08-at-9.21.17-PM

One tends to roll one’s eyes when the topic turns to Georges-Louis Leclerc, Comte de Buffon, the French encyclopedist and pre-revolutionary intellectual luminary.

Buffon sounds regrettably similar to Buffoon, especially considering that The Comte is best-known for some memorable blunders. For example, Georges-Louis came out on the losing side of a tussle with Thomas Jefferson regarding the general valor of the New World fauna. From the wikipedia article:

At one point, Buffon propounded a theory that nature in the New World was inferior to that of Eurasia. He argued that the Americas were lacking in large and powerful creatures, and that even the people were less virile than their European counterparts. He ascribed this inferiority to the marsh odors and dense forests of the American continent. These remarks so incensed Thomas Jefferson that he dispatched twenty soldiers to the New Hampshire woods to find a bull moose for Buffon as proof of the “stature and majesty of American quadrupeds”

Buffon also speculated, in 1778, that the solar system’s planets were the result of a collision between a comet and the Sun, a hypothesis that is completely incorrect. Even in the 1750s, perturbation analyses (such as those carried out by Alexis Claude Clairaut in connection with the successful predictions of the return ephemeris for Halley’s Comet) had made it clearly evident that cometary masses are far smaller than planetary masses.

Buffon, however, was definitively not a buffoon. He came remarkably close to having a full command of all the scientific disciplines, and some of his efforts still sparkle. He calculated that the chance of the Sun rising tomorrow is \(1-(1/2)^x\), where \(x\) is the number of consecutive days that it has risen to date. In his treatment of probability theory, he also stated that one chance in 10,000 is the lowest practical probability — an enormously useful bon mot, on par, say, with Andy Warhol’s remark that “when you think about it, Department Stores are kind of like Museums.”

Buffon’s Histoire Naturelle, which aimed to exhaustively cover all of the natural sciences, ran to 44 quarto volumes, eight of which were written and which appeared after he died, and all of which were out of date the moment they were printed. Even in the 1700s, scientific knowledge was accumulating so rapidly that it was impossible to keep up.

It has been recently hammered home to me that the same situation also now holds true for extrasolar planets. Jack Lissauer and I just finished a review article on exoplanets for the forthcoming second edition of Elsevier’s Treatise on Geophysics. A pre-print is up on today’s arXiv listing. In writing the article, it was painfully clear just how large the literature is, and how fast it is growing…

Boys, be ambitious!

When I lived in Japan, I visited Hokkaido University in Sapporo to give an astronomy colloquium. While there, I immediately noticed that an odd motto, “Boys, Be Ambitious!” is attached (in English) with great frequency to the various affairs, both large and small, of the University. One of the astronomy graduate students had the phrase written on a post-it note attached to the screen of his computer. In another building, there was a large mural showing a stern, stiffly dressed 19th-century gentleman exhorting a group of reverent students with a longer version of the phrase:

“Boys, be ambitious! Be ambitious not for money or for selfish aggrandizement, not for that evanescent thing which men call fame. Be ambitious for that attainment of all that a man ought to be.”

Which, upon reflection, seems to be reasonable advice…

The gentleman in the mural, it turns out, is William Clark Smith, the founder and first president of the University of Amherst, Massachusetts. In the mid 1870s, he was enlisted by the Japanese Meiji Restoration government as an Oyatoi Gaikokujin, or “hired foreigner”, to establish an agricultural college in Sapporo (now Hokkaido University) and he made an impression that has lasted well over a century. The Wikipedia article is extensive and quite interesting. On the origination of the motto:

“On the day of Clark’s departure, April 16, 1877, students and faculty of SAC rode with him as far as the village of Shimamatsu, then 13 miles (21 km) outside of Sapporo. As recalled by one of the students, Masatake Oshima, after saying his farewells, Clark shouted, “Boys, be ambitious!”

Upon returning to the United States, and flush with the organizational successes and appreciation that he had garnered in Japan, Clark left his academic career, cultivated an interest in gold and silver mining, and embarked on an abrupt, ambitious, and ultimately disastrous foray into the business world. In 1880, he teamed up with a junior partner, John R. Bothwell, to found what might best be described as a 19th-century incarnation of a metals hedge fund. From offices on the corner of Nassau and Wall Streets in Manhattan, the firm of Clark & Bothwell acquired interests in a slew of silver and gold mines across North America, for which they assumed management and issued stock. Clark, as president, got his contacts and colleagues to invest in the venture, and for a period during 1881, the stocks issued by Clark and Bothwell ran up into multi-million dollar valuations. A classic example of a bubble.

Clark travelled around the country, promoting the company, acquiring new mines, and seeing to their management, while Bothwell appears to have been responsible for back-office operations. Clark, who had no experience in finance, and little real knowlege of mining geology seems to have spun his wheels, while Bothwell, who had a shady history, actively mismanaged the companies. The operation got into debt, with the outcome being all too typically familiar along the lines of When Genius Failed. By the Spring of 1882, they were facing insolvency, investor lawsuits, fraud allegations, and various other problems. Bothwell disappeared on a train trip to San Francisco, never to be seen again, leaving Clark holding the bag. The story played out to the delight of the Massachusetts and national press.

From the Springfield Republican, May 29, 1882:

… it appears form the beginning that he, as manager of the mines has allowed Bothwell, as treasurer, absolute control of the books and finances of the several companies. It doesn’t appear that he ever examined the books, nor had anybody do so for him, or inquired into the financial condition of each mine, or what was being done with their profits; neither has he required from Bothwell such bonds as the latter’s position should require for the safe handling of moneys entrusted to him..

The scandal made the New York Times, which wrote several articles about the affair, including this one, from May 29th, 1882, which I dug out of the archive:


The scandals eventually ruined Clark’s health, and he died four years later, in 1886, at age 60. A cautionary tale for academics everywhere with ambitions to leave the Ivory Tower in search of glittering lucre…

Census

Screen-Shot-2015-01-17-at-12.23.27-PM

I’ve been putting the finishing touches on a review article covering extrasolar planets that will be posted to arXiv in a few days. The list of to-do’s involves updating the figures, including the one shown just below, which charts \(M\sin i\)‘s of the RV-sourced planets in dark gray and simple radius-derived mass estimates of the transit-sourced planets in red. The steady Moore’s Law-like progression toward ever-lower masses has definitively reached Earth-mass (not to be confused with Earth-like) planets. The process took up only two decades, and was among the more impressive scientific advances of the recent past.

Screen-Shot-2015-01-17-at-12.25.04-PM

Here’s an elaboration of the above figure that doesn’t make it into the article, but is interesting nonetheless. On the y-axis is \(K/rms\), which is reasonably well correlated with the signal strength of Doppler velocity discoveries. One can certainly detect planets with confidence at low \(K/rms\), but it requires a large number of independent Doppler velocity measurements. The color corresponds to “astrobiological interest” — surely naive, and probably misplaced, but nonetheless quantifiable by my planet valuation formula.

Screen-Shot-2015-01-17-at-12.29.08-PM

The Elysian Fields

Screen-Shot-2015-01-14-at-5.49.47-PM
Credit: NASA/JPL

It feels increasingly awkward and embarrassing to read LaTeXed, peer-reviewed articles that quantify and delineate the habitable zone — the special region surrounding a star that is invariably (and rather fittingly) linked to a particular fairy tale from the Brothers Grimm.

Evolutionary psychologists have speculated that the concept of the afterlife might be inextricably entwined to the evolution of the mind’s ability to reason about the minds of others. A rational world view, however, frustrates ingrained atavistic yearnings and a belief in the supernatural. Habitable planets provide a respectable stopgap to assuage the discomfort of these incompatible poles. Could it be a mere coincidence that the ancient Greek and classical depictions of Elýsion pedíon, the Elysian Fields, are part and parcel the very image of the habitable zone?

Screen-Shot-2015-01-14-at-5.43.46-PM
Credit: NASA/SETI/JPL

And they live untouched by sorrow in the islands of the blessed along the shore of deep-swirling Ocean, happy heroes for whom the grain-giving earth bears honey-sweet fruit flourishing thrice a year, far from the deathless gods…

— Hesiod, Works and Days (170)

Detroit

Screen-Shot-2015-01-08-at-12.19.43-PM

The submerged summit of the Detroit Seamount ranks among the planet’s gloomiest spots. East of Kamchatka, a mile beneath the waves at 51 51′ N, 167 45′ E, it is second-to-last in the long line of Emperors. Inch by inch, it creeps toward destruction in the Aleutian Trench.

Detroit’s glory days were the late Cretaceous. Back then, it was an active Hawaiian volcano.

Live it fast, you’re gonna get there soon. Kauai is five million years old, but underground, the lights have gone out. Over half of the original height and the original land area have disappeared. Rivers gush sediment into the sea. Waimea Canyon juxtaposes verdure and an erosive wasteland. Four wheel drive claws and rends the red dirt.

Screen-Shot-2015-01-08-at-12.32.49-PM

Beyond Kauai, the next islands in the chain are Nihoa,

Screen-Shot-2015-01-08-at-12.08.42-PM

Necker,

Screen-Shot-2015-01-08-at-12.09.46-PM

and the La Perouse Pinnacle,

Screen-Shot-2015-01-08-at-12.13.32-PM

whose resemblance to a sinking ship is not just metaphoric.

Before humans arrived, the Hawaiian islands had strange flightless birds. Indeed, each island in the chain developed its own odd avian inhabitants, sculpted by natural selection, and then driven conveyor-like to extinction. Not once, in forty, fifty, sixty tries, did the birds respond by evolving intelligence and doing something about their situation. Probably, there was never enough time.

Or perhaps, that’s something that rarely, if ever, happens.

lightspeed

Screen-Shot-2015-01-01-at-1.21.48-PM

Aon Tower, as seen from Lurie Garden in Millennium Park

Millennium Park in Chicago is a remarkable place. Skyscrapers shoulder together and soar up steeply to the north and to the west. The vertiginous effect of their cliff faces is reminiscent of Yosemite Valley.

Lurie Garden is at the center of the park, and is given over largely to native plants that carpeted the Illinois landscape in the interval between the retreat of the glaciers and the advance of the corn fields. In the silence of a photograph with a narrow field of view, it is as if the city never existed.

Screen-Shot-2015-01-01-at-4.47.48-PM

Lurie Garden

Restore the sound, and the the buzz and hum of insects are superimposed on the wash of urban noise. A swarm of bees, algorithmic in their efficiency, and attuned to the flowers’ black light glow, collect the nectar. 55% sucrose, 24% glucose and 21% fructose.

When viewed in microwaves and millimeter waves, say from 1 to 100 GHz, the Millennium Park scene displays a similarly jarring juxtaposition. The sky glows with the ancient three degree background radiation — the cosmic static of the Big Bang explosion — subtly brightest in the direction of the Virgo Supercluster. All around, the buildings, the roads and the sidewalks are lit up with manically pulsating wireless transmitters: routers, cell phones, myriad sensors. In highly focused 6 GHz and 11 GHz beams, billions of dollars in coded securities orders streak above the urban canyons on line-of-sight paths linking the data centers of Chicago, Aurora, and suburban New Jersey. The fastest path of all runs through the top of the monolithic Aon Tower, where the signal is amplified and launched onward across the Lake and far into Michigan.

The microwave beams are a new development. In mid-2010, price movements at the Chicago Mercantile Exchange generated reactions in New Jersey nine milliseconds later. The signals traveled on fiber optic cables that meandered along railroad rights-of-way.

stockResponse2010

Now, the messages arrive within a few microseconds of the time it would take light to travel in vacuum, galvanizing the swarm of algorithms that are continually jostling and buzzing in the vicinity of the match.

stockResponse2013

Angular Power Spectra

Screen-Shot-2014-12-28-at-10.24.18-PM

It’s worth a scramble to get a window seat on a Hawaiian inter-island flight. The views are full of craggy green cliffs, porcelain ocean, and wispy masses of fog and cloud. Sometimes, several islands are visible at once, and it’s not hard to imagine that the archipelago might extend over the entire globe.

That would be a very different planet, and, in fact, a world covered by hotspot volcanoes might have a surface elevation profile somewhat reminiscent of the WMAP image of the temperature fluctuations in the cosmic microwave background. The WMAP image brings to mind a planet covered in Hawaiian islands.

Screen-Shot-2014-12-28-at-10.36.31-PM

Any distribution, \(f(\theta,\phi)\), on the surface of a sphere, be it of temperature, or elevation, or the density of IP addresses, can be expressed as a weighted sum of spherical harmonics

$$f(\theta,\phi)=\sum_{l,m} a_{l,m} Y(\theta,\phi)_{l}^{m}\, ,$$
where the coefficients corresponding to the individual weights, \(a_{l,m}\) are given by
$$a_{l,m}=\int_{\Omega}f(\theta,\phi)Y(\theta,\phi)_{l}^{m \star}d\Omega\, ,$$
and the power, \(C_{l}\) at angular scale \(l\) is
$$C_{l}=\frac{1}{2l+1}\sum_{m=-l}^{l}a_{l,m} {a_{l,m}}^{\star}\, .$$

The power spectrum of the CMB anisotropies peaks at \(l\sim 200\), which corresponds to an angular scale on the sky of \(\Delta \theta \sim 1^{\circ}\), which is very close to the solid angle subtended by the Big Island of Hawaii on the surface of the spherical Earth.

Here’s a recent version of the CMB temperature anisotropy spectrum from the Planck Mission website

Screen-Shot-2014-12-29-at-9.24.16-AM

The peaks in the spectrum of CMB temperature anisotropies stem from acoustic oscillations and diffusion damping in the early universe, and they encode all sorts of information about the fundamental cosmological parameters. This, of course, is very well-known stuff: a search on all literature in the ADS database published since 2000, and ranked by citations, lists Spergel et al. 2003, First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters at #1, with 7,914 citations and (rapidly) counting.

Given the similarity between the angular scales of the Hawaiian islands and the main CMB peak, it’s interesting to compute the angular power spectrum of Earth’s bedrock elevation profile. A global relief dataset with one arc-minute resolution is available from NOAA as a 4GB (uncompressed) file. Downsampling by a factor of 100, and applying the “terrain” color map yields a familiar scene

Screen-Shot-2014-12-29-at-10.33.14-AM

Computing the power in the first 108 angular modes of the relief distribution in the above data set gives a spectrum that is weighted toward continents and ocean basins rather than archipelagos. There is a pronounced peak at \(l=5\) that reflects the typical angular scale of continents and ocean basins.

figureAng_1

Here is the global relief distribution obtained by summing just the \(l=5\) contributions. It’s right for more or less the same reason that Crates of Mallus was right:

Screen-Shot-2015-01-01-at-6.06.04-PM

Using all 108 angular mode families to reconstruct the image gives a fairly credible-looking world map. It’s as if the watercolors ran slightly before they dried. Most critically, the \(l=108\) reconstruction fails to capture the highest peaks and the lowest ocean trenches, and hence more of the dynamic range of the color map is distributed across the globe.

Screen-Shot-2014-12-31-at-6.06.04-PM

Degree-wide islands like Hawaii are the exception rather than the rule on Earth’s surface. I believe that this was the concept that former US Vice President Dan Qualye was struggling to express in one of his much-ridiculed pronouncements:

Hawaii has always been a very pivotal role in the Pacific. It is IN the Pacific. It is a part of the United States that is an island that is right here.

(See also his comments on Mars.)